Nitrogen-starvation-induced chlorosis in Synechococcus PCC 7942: adaptation to long-term survival.

نویسندگان

  • M Görl
  • J Sauer
  • T Baier
  • K Forchhammer
چکیده

When deprived of essential nutrients, the non-diazotrophic cyanobacterium Synechococcus sp. strain PCC 7942 undergoes a proteolytic degradation of the phycobiliproteins, its major light-harvesting pigments. This process is known as chlorosis. This paper presents evidence that the degradation of phycobiliproteins is part of an acclimation process in which growing cells differentiate into non-pigmented cells able to endure long periods of starvation. The time course of degradation processes differs for various photosynthetic pigments, for photosystem I and photosystem II activities and is strongly influenced by the illumination and by the experimental conditions of nutrient deprivation. Under standard experimental conditions of combined nitrogen deprivation, three phases of the differentiation process can be defined. The first phase corresponds to the well-known phycobiliprotein degradation, in phase 2 the cells lose chlorophyll a prior to entering phase 3, the fully differentiated state, in which the cells are still able to regenerate pigmentation after the addition of nitrate to the culture. An analysis of the protein synthesis patterns by two-dimensional gel electrophoresis during nitrogen starvation indicates extensive differential gene expression, suggesting the operation of tight regulatory mechanisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitrogen starvation-induced chlorosis in Synechococcus PCC 7942. Low-level photosynthesis as a mechanism of long-term survival.

Cells of the non-diazotrophic cyanobacterium Synechococcus sp. strain PCC 7942 acclimate to nitrogen deprivation by differentiating into non-pigmented resting cells, which are able to survive prolonged periods of starvation. In this study, the physiological properties of the long-term nitrogen-starved cells are investigated in an attempt to elucidate the mechanisms of maintenance of viability. ...

متن کامل

Transcriptome landscape of Synechococcus elongatus PCC 7942 for nitrogen starvation responses using RNA-seq

The development of high-throughput technology using RNA-seq has allowed understanding of cellular mechanisms and regulations of bacterial transcription. In addition, transcriptome analysis with RNA-seq has been used to accelerate strain improvement through systems metabolic engineering. Synechococcus elongatus PCC 7942, a photosynthetic bacterium, has remarkable potential for biochemical and bi...

متن کامل

Photophysiological and Photosynthetic Complex Changes during Iron Starvation in Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942

Iron is an essential component in many protein complexes involved in photosynthesis, but environmental iron availability is often low as oxidized forms of iron are insoluble in water. To adjust to low environmental iron levels, cyanobacteria undergo numerous changes to balance their iron budget and mitigate the physiological effects of iron depletion. We investigated changes in key protein abun...

متن کامل

Identification and nitrogen regulation of the cyanase gene from the cyanobacteria Synechocystis sp. strain PCC 6803 and Synechococcus sp. strain PCC 7942.

An open reading frame (slr0899) on the genome of Synechocystis sp. strain PCC 6803 encodes a polypeptide of 149 amino acid residues, the sequence of which is 40% identical to that of cyanase from Escherichia coli. Introduction into a cyanase-deficient E. coli strain of a plasmid-borne slr0899 resulted in expression of low but significant activity of cyanase. Targeted interruption of a homolog o...

متن کامل

The narA locus of Synechococcus sp. strain PCC 7942 consists of a cluster of molybdopterin biosynthesis genes.

The narA locus required for nitrate reduction in Synechococcus sp. strain PCC 7942 is shown to consist of a cluster of genes, namely, moeA, moaC, moaD, moaE, and moaA, involved in molybdenum cofactor biosynthesis. The product of the moaC gene of strain PCC 7942 shows homology in its N-terminal half to MoaC from Escherichia coli and in its C-terminal half to MoaB or Mog. Overexpression of the Sy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microbiology

دوره 144 ( Pt 9)  شماره 

صفحات  -

تاریخ انتشار 1998